Linearly Constrained Minimum Variance for Robust I-vector Based Speaker Recognition

نویسندگان

  • A. Khosravani
  • M. M. Homayounpour
چکیده

This paper aims at presenting our algorithm used to make submission for the NIST 2013-2014 speaker recognition ivector challenge. The fixed dimensional i-vector representation of speech utterances has attracted attentions from other communities. This challenge focuses on the task of speaker detection using i-vectors derived from conversational telephony speech data. However, the unlabeled i-vectors provided for development purpose make the problem more challenging. The proposed method uses the idea of one of the popular robust beamforming techniques named Linearly Constrained Minimum Variance (LCMV), which has been presented in the context of beamforming for signal enhancement. We will show that LCMV can improve performance by building a model from different i-vectors of a given speaker so as to cancel inter-session variability and increase inter-speaker variability. Imposter covariance matrix modification and score normalization using a selection of imposter speakers have been proposed to improve performance. As measured by minimum decision cost function defined in the challenge, our result is 27% better relative to the baseline system.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Novel Frequency Domain Linearly Constrained Minimum Variance Filter for Speech Enhancement

A reliable speech enhancement method is important for speech applications as a pre-processing step to improve their overall performance. In this paper, we propose a novel frequency domain method for single channel speech enhancement. Conventional frequency domain methods usually neglect the correlation between neighboring time-frequency components of the signals. In the proposed method, we take...

متن کامل

Integrated Feature Normalization and Enhancement for Robust Speaker Recognition Using Acoustic

State-of-the-art factor analysis based channel compensation methods for speaker recognition are based on the assumption that speaker/utterance dependent Gaussian Mixture Model (GMM) mean super-vectors can be constrained to lie in a lower dimensional subspace, which does not consider the fact that conventional acoustic features may also be constrained in a similar way in the feature space. In th...

متن کامل

Integrated Feature Normalization and Enhancement for robust Speaker Recognition using Acoustic Factor Analysis

State-of-the-art factor analysis based channel compensation methods for speaker recognition are based on the assumption that speaker/utterance dependent Gaussian Mixture Model (GMM) mean super-vectors can be constrained to lie in a lower dimensional subspace, which does not consider the fact that conventional acoustic features may also be constrained in a similar way in the feature space. In th...

متن کامل

Speaker Verification Under Adverse Conditions Using i-Vector Adaptation and Neural Networks

The main challenges introduced in the 2016 NIST speaker recognition evaluation (SRE16) are domain mismatch between training and evaluation data, duration variability in test recordings and unlabeled in-domain training data. This paper outlines the systems developed at CRIM for SRE16. To tackle the domain mismatch problem, we apply minimum divergence training to adapt a conventional i-vector ext...

متن کامل

Maximum Likelihood Lineartransformations for Hmm

This paper examines the application of linear transformations for speaker and environmental adaptation in an HMM-based speech recognition system. In particular, transformations that are trained in a maximum likelihood sense on adaptation data are investigated. Other than in the form of a simple bias, strict linear feature-space transformations are inappropriate in this case. Hence, only model-b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014